Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Neurosci Lett ; 825: 137710, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38432355

RESUMO

Extensive experimental evidence points to neuroinflammation and oxidative stress as major pathogenic events that initiate and drive the neurodegenerative process. Monosodium glutamate (MSG) is a widely used food additive in processed foods known for its umami taste-enhancing properties. However, concerns about its potential adverse effects on the brain have been raised. Thus, the present study investigated the impact of MSG on lipopolysaccharide (LPS)-induced neurotoxicity in rat brains. Wistar rats weighing between 180 g and 200 g were randomly allocated into four groups: control (received distilled water), MSG (received 1.5 g/kg/day), LPS (received 250 µg/kg/day), and LPS + MSG (received LPS, 250 µg/kg, and MSG, 1.5 g/kg). LPS was administered intraperitoneally for 7 days while MSG was administered orally for 14 days. Our results showed that MSG exacerbated LPS-induced impairment in locomotor and exploratory activities in rats. Similarly, MSG exacerbated LPS-induced oxidative stress as evidenced by increased levels of malondialdehyde (MDA) with a concomitant decrease in levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-s-transferase (GST) in the brain tissue. In addition, MSG potentiated LPS-induced neuroinflammation, as indicated by increased levels of pro-inflammatory cytokines such as interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) as well as myeloperoxidase (MPO) and nitric oxide (NO) in the brain. Moreover, MSG aggravated LPS-induced cholinergic dysfunction, as demonstrated by increased activity of acetylcholinesterase (AChE) in the brain. Further, we found a large number of degenerative neurons widespread in hippocampal CA1, CA3 regions, cerebellum, and cortex according to H&E staining. Taken together, our findings suggest that MSG aggravates LPS-induced neurobehavioral deficits, oxidative stress, neuroinflammation, cholinergic dysfunction, and neurodegeneration in rat brains.


Assuntos
Lipopolissacarídeos , Glutamato de Sódio , Ratos , Animais , Glutamato de Sódio/toxicidade , Lipopolissacarídeos/toxicidade , Ratos Wistar , Acetilcolinesterase/metabolismo , Doenças Neuroinflamatórias , Estresse Oxidativo , Glutationa/metabolismo , Encéfalo/metabolismo , Colinérgicos/farmacologia
2.
Mol Biol Rep ; 51(1): 277, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319443

RESUMO

BACKGROUND: The most widely used food additive monosodium glutamate (MSG) has been linked to immunopathology. Conversely, quercetin (Q), a naturally occurring flavonoid has been demonstrated to have immunomodulatory functions. Therefore, the purpose of the study is to determine if quercetin can mitigate the deleterious effects of MSG on immune cells, and the possible involvement of TLR, if any.  METHODS AND RESULTS: This study was conducted on Q, to determine how it affects the inflammatory response triggered by MSG in primary cultured thymocytes and splenocytes from rats (n = 5). Q shielded cells by augmenting cell survival and decreasing lactate dehydrogenase leakage during MSG treatment. It decreased IL-1ß, IL-6, IL-8, and TNF-α expression and release by hindering NF-kB activation and by inhibiting the JAK/STAT pathway. Moreover, Q prevented NLRP3 activation, lowered IL-1ß production, and promoted an anti-inflammatory response by increasing IL-10 production. Q reduced MSG-induced cellular stress and inflammation by acting as an agonist for PPAR-γ and LXRα, preventing NF-kB activation, and lowering MMP-9 production via increasing TIMP-1. Additionally, Q neutralized free radicals, elevated intracellular antioxidants, and impeded RIPK3, which is involved in inflammation induced by oxidative stress, TNF-α, and TLR agonists in MSG-treated cells. Furthermore, it also modulated TYK2 and the JAK/STAT pathway, which exhibited an anti-inflammatory effect. CONCLUSIONS: MSG exposure is associated with immune cell dysfunction, inflammation, and oxidative stress, and Q modulates TLR to inhibit NF-kB and JAK/STAT pathways, providing therapeutic potential. Further research is warranted to understand Q's downstream effects and explore its potential clinical applications in inflammation.


Assuntos
NF-kappa B , Transdução de Sinais , Animais , Ratos , Anti-Inflamatórios , Inflamação/induzido quimicamente , Janus Quinases , Quercetina/farmacologia , Glutamato de Sódio/toxicidade , Baço , Fatores de Transcrição STAT , Timócitos , Fator de Necrose Tumoral alfa
3.
Food Chem Toxicol ; 185: 114464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244665

RESUMO

In present study, we investigated the relationship between the pregnancy exposure to monosodium glutamate (MSG) and autism development in male offspring of rats. Pregnant Wistar rats were allocated into five groups. The first group was control group that pregnant animals received normal saline orally from day 1-18 of pregnancy. Group 2, 3 and 4 pregnant rats received different doses (1.5, 5 and 10 g/kg) of MSG by the same way respectively. Group 5 received 500 mg/kg of Valproic acid (VPA) on the 12.5th day of pregnancy. Different behavioral tests including marble burying, self-grooming, and Barnes maze test were performed on offspring. The levels of glutamate and GSH markers were also measured. The results showed that MSG similar to VPA led to induction of autistic anxiety and repetitive behaviors. It could also deteriorate the spatial memory. Besides we found that behavioral symptoms potentiated with increasing the MSG dosage. Similarly, we had an increase in glutamate and a reduction in GSH levels in offspring. Findings indicated that MSG was able to induce autism in offspring of rats in a dose-dependent way. This effect could be through increasing of glutamate and reduction of GSH. Consequently, MSG should be avoided during pregnancy.


Assuntos
Transtorno Autístico , Glutamato de Sódio , Gravidez , Feminino , Ratos , Animais , Masculino , Glutamato de Sódio/toxicidade , Ratos Wistar , Transtorno Autístico/induzido quimicamente , Ácido Valproico , Ansiedade , Modelos Animais de Doenças
4.
J Biochem Mol Toxicol ; 38(1): e23612, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38084638

RESUMO

Monosodium glutamate (MSG, E621) is a flavor-enhancing food additive used widely in the food preparation industry and consumed regularly. It is considered that long-term consumption of MSG causes metabolic syndrome and obesity. Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood sugar, polyuria, polydipsia, and polyphagia, in which insulin secreted from pancreatic ß cells is inadequate for maintaining blood glucose homeostasis. Rats were application 65 mg/kg streptozotocin (STZ) solution intraperitoneally and a diabetes model was created. For this purpose, freshly prepared STZ was injected into the peritoneum. Tumor necrosis factor-α, interleukin (IL)-10, IL-6, and IL-1ß levels in STZ, MSG, and STZ + MSG groups were found to be significantly increased in inflammation parameters measured on the 28th day of administration when compared to the Control Group (p < 0.001). Also, although malondialdehyde (MDA) levels increased significantly in the STZ + MSG group when compared to the control group (p < 0.001), glutathione (GSH), and superoxide dismutase (SOD) levels were significantly decreased in the STZ, MSG, and STZ + MSG groups when compared to the control group (p < 0.001). Also, although glucose levels increased significantly in STZ and STZ + MSG at the end of the 28th day (p < 0.01), insulin levels decreased in STZ, MSG, and STZ + MSG groups when compared to the control groups (p < 0.01). As a result, it was found that STZ and MSG application significantly increased cytokine production, increased MDA, which is an oxidant parameter in pancreatic tissue, and decreased antioxidants (GSH and SOD) when compared to the control groups. It was also found that MSG disrupted the normal histological structure in pancreatic cells, and the damage was much more in both exocrine and endocrine pancreatic areas in the STZ + MSG group when compared to the STZ and MSG groups. It was considered that with the increased use of MSG, the susceptibility to DM might increase along with tissue damage significantly in diabetic groups, therefore, MSG must be used in a limited and controlled manner.


Assuntos
Diabetes Mellitus Experimental , Glutamato de Sódio , Ratos , Animais , Glutamato de Sódio/toxicidade , Glutamato de Sódio/metabolismo , Antioxidantes/farmacologia , Pâncreas/metabolismo , Insulina/metabolismo , Glutationa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Superóxido Dismutase/metabolismo , Glicemia/metabolismo , Estresse Oxidativo
5.
J Chem Neuroanat ; 134: 102347, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838216

RESUMO

Satellite glial cells (SGCs), involved inter alia in glutamate (Glu) metabolism, form a glial sheath around sensory neurons of dorsal root ganglia (DRGs). SGCs show a presence of glutamine synthetase (GS) which transform uptaken Glu into glutamine (Gln). In DRGs, this aminoacid is used mainly by small neurons which are able to synthetize substance P (SP) that play a crucial role in nociception. The aim of the study was to define the influence of monosodium glutamate (MSG) on GS immunoreactivity in satellite glia around various subpopulations of neurons including SP immunopositive cells in DRGs of adult rats. The studies were carried out on lumbar DRGs slides in rats which received subcutaneous injection of saline solution (control group) or 4 g/kg b. w. of MSG (MSG group). Immunofluorescence reactions were conducted with use of anti-GS and anti-SP antibodies. Administration of MSG to adult rats increased the GS immunoexpression in SGCs. In rats receiving MSG, a number of small neurons with GS-immunopositive glial sheath was not altered when compared to control individuals, whereas there was a statistically significant increase of GS immunoexpression in SGCs around large and medium neurons. Moreover, in these animals, a statistically significant increase in the number of small SP-positive neurons with GS-positive glial sheath was observed. SP is responsible for transmission of pain, thus the obtained results may be useful for further research concerning the roles of glia in nociceptive pathway regulation.


Assuntos
Gânglios Espinais , Glutamato de Sódio , Animais , Ratos , Gânglios Espinais/metabolismo , Glutamato-Amônia Ligase/imunologia , Glutamato-Amônia Ligase/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Glutamato de Sódio/toxicidade , Glutamato de Sódio/metabolismo , Substância P/metabolismo
6.
Neurotox Res ; 41(6): 670-680, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713032

RESUMO

Glutamate in monosodium glutamate (MSG), which is widely used in the food industry, has an important role in major brain functions such as memory, learning, synapse formation, and stabilization. However, extensive use of MSG has been linked with neurotoxicity. Therefore, in addition to clarifying the underlying mechanisms of MSG-induced neurotoxicity, it is also important to determine safe agents that can diminish the damage caused by MSG. Tannic acid (TA) is a naturally occurring plant polyphenol that exhibits versatile physiological effects such as anti-inflammatory, anti-carcinogenic, antioxidant, and radical scavenging. This study was conducted to assess the neurotoxic and neuroprotective effects of these two dietary components in the rat cerebral cortex. Twenty-four Sprague Dawley rats were divided into 4 equal groups and were treated with MSG (2 g/kg) and TA (50 mg/kg) alone and in combination for 3 weeks. Alterations in oxidative stress indicators (MDA and GSH) were measured in the cortex tissues. In addition, changes in enzymatic activities and gene expression patterns of antioxidant system components (GST, GPx, CAT, and SOD) were investigated. Furthermore, mRNA expressions of FoxO transcription factors (Foxo1 and Foxo3) and apoptotic markers (Casp3 and Casp9) were assessed. Results revealed that dietary TA intake significantly rehabilitated MSG-induced dysregulation in cortical tissue by regulating redox balance, cellular homeostasis, and apoptosis. The present study proposes that MSG-induced detrimental effects on cortical tissue are potentially mitigated by TA via modulation of oxidative stress, cell metabolism, and programmed cell death.


Assuntos
Antioxidantes , Glutamato de Sódio , Ratos , Animais , Antioxidantes/farmacologia , Glutamato de Sódio/toxicidade , Ratos Wistar , Ratos Sprague-Dawley , Estresse Oxidativo , Córtex Cerebral , Taninos/farmacologia
7.
Neurogastroenterol Motil ; 35(9): e14596, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248774

RESUMO

BACKGROUND: Monosodium glutamate (MSG) has been identified as a trigger of abdominal pain in irritable bowel syndrome (IBS), but the mechanism is unknown. This study examined whether MSG causes visceral hypersensitivity using a water-avoidance stress (WAS) mouse model of visceral pain. METHODS: Mice were divided into four groups receiving treatment for 6 days: WAS + MSG gavage, WAS + saline gavage, sham-WAS + MSG gavage, and sham-WAS + saline gavage. The acute effects of intraluminal administration of 10 µM MSG on jejunal extrinsic afferent nerve sensitivity to distension (0-60 mmHg) were examined using ex vivo extracellular recordings. MSG was also applied directly to jejunal afferents from untreated mice. Glutamate concentration was measured in serum, and in the serosal compartment of Ussing chambers following apical administration. KEY RESULTS: Acute intraluminal MSG application increased distension responses of jejunal afferent nerves from mice exposed to WAS + MSG. This effect was mediated by wide dynamic range and high-threshold units at both physiologic and noxious pressures (10-60 mmHg, p < 0.05). No effect of MSG was observed in the other groups, or when applied directly to the jejunal afferent nerves. Serum glutamate was increased in mice exposed to WAS + MSG compared to sham-WAS + saline, and serosal glutamate increased using WAS tissue (p = 0.0433). CONCLUSIONS AND INFERENCES: These findings demonstrate that repeated exposure to MSG in mice leads to sensitization of jejunal afferent nerves to acute ex vivo exposure to MSG. This may contribute to visceral hypersensitivity reported in response to MSG in patients with IBS.


Assuntos
Síndrome do Intestino Irritável , Dor Visceral , Animais , Camundongos , Glutamato de Sódio/toxicidade , Síndrome do Intestino Irritável/induzido quimicamente , Dieta , Glutamatos , Desidratação , Modelos Animais de Doenças , Solução Salina
8.
J Biochem Mol Toxicol ; 37(5): e23315, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732937

RESUMO

Vascular endothelial growth factor (VEGF) exerts neuroprotective or proinflammatory effects, depending on what VEGF forms (A-E), receptor types (VEGFR1-3), and intracellular signaling pathways are involved. Neonatal monosodium glutamate (MSG) treatment triggers neuronal death by excitotoxicity, which is commonly involved in different neurological disorders, including neurodegenerative diseases. This study was designed to evaluate the effects of VEGFR-2 inhibition on neuronal damage triggered by excitotoxicity in the cerebral motor cortex (CMC) and hippocampus (Hp) after neonatal MSG treatment. MSG was administered at a dose of 4 g/kg of body weight (b.w.) subcutaneously on postnatal days (PD) 1, 3, 5, and 7, whereas the VEGFR-2 inhibitor SU5416 was administered at a dose of 10 mg/kg b.w. subcutaneously on PD 5 and 7, 30 min before the MSG treatment. Neuronal damage was assessed using hematoxylin and eosin staining, fluoro-Jade staining, and TUNEL assay. Additionally, western blot assays for some proteins of the VEGF-A/VEGFR-2 signaling pathway (VEGF-A, VEGFR-2, PI3K, Akt, and iNOS) were carried out. All assays were performed on PD 6, 8, 10, and 14. Inhibition of VEGFR-2 signaling by SU5416 increases the neuronal damage induced by neonatal MSG treatment in both the CMC and Hp. Moreover, neonatal MSG treatment increased the expression levels of the studied VEGF-A/VEGFR-2 signaling pathway proteins, particularly in the CMC. We conclude that VEGF-A/VEGFR-2 signaling pathway activation could be part of the neuroprotective mechanisms that attempt to compensate for neuronal damage induced by neonatal MSG treatment and possibly also in other conditions involving excitotoxicity.


Assuntos
Hipocampo , Córtex Motor , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Hipocampo/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Glutamato de Sódio/toxicidade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais
9.
Neurotoxicology ; 94: 87-97, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400230

RESUMO

Monosodium glutamate (MSG) is a popular flavor enhancer largely used in the food industry. Although numerous studies have reported the neurotoxic effects of MSG on humans and animals, there is limited information about how it affects embryonic brain development. Thus, this study aimed to determine the effects of in ovo administered MSG on embryonic brain development in chickens. For this purpose, 410 fertilized chicken eggs were divided into 5 groups as control, distilled water, 0.12, 0.6 and 1.2 mg/g egg MSG, and injections were performed via the egg yolk. On days 15, 18, and 21 of the incubation period, brain tissue samples were taken from all embryos and chicks. The mortality rates of MSG-treated groups were significantly higher than those of the control and distilled water groups. The MSG-treated groups showed embryonic growth retardation and various structural abnormalities such as abdominal hernia, unilateral anophthalmia, hemorrhage, brain malformation, and the curling of legs and fingers. The relative embryo and body weights of the MSG-treated groups were significantly lower than those of the control group on incubation days 18 and 21. Histopathological evaluations revealed that MSG caused histopathological changes such as necrosis, neuronophagia, and gliosis in brain on incubation days 15, 18, and 21. There was a significant increase in the number of necrotic neurons in the MSG-treated groups compared to the control and distilled water groups in the hyperpallium, optic tectum and hippocampus regions. Proliferating cell nuclear antigen (PCNA) positive cells in brain were found in the hyperpallium, optic tectum, and hippocampus regions; there were more PCNA(+) immunoreactive cells in MSG-treated groups than in control and distilled water groups. In conclusion, it was determined that in ovo MSG administered could adversely affect embryonic growth and development in addition to causing necrosis in the neurons in the developing brain.


Assuntos
Galinhas , Glutamato de Sódio , Animais , Encéfalo , Desenvolvimento Embrionário , Necrose , Antígeno Nuclear de Célula em Proliferação/farmacologia , Glutamato de Sódio/efeitos adversos , Glutamato de Sódio/toxicidade , Água/farmacologia
10.
Niger J Physiol Sci ; 38(1): 73-78, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243365

RESUMO

Monosodium glutamate (MSG) has been known to cause neurodegeneration, due to its ability to trigger excitotoxicity, and the hippocampus is one of the most affected regions. Therefore, Phoenix dactylifera (P. dactylifera) and polyphenols was employed in this study to mitigate on the deleterious effect of monosodium glutamate on the dentate gyrus of Wistar rats. Forty-eight male Wistar rats weighing between 120-150g was used for the study. The Wistar rats were grouped into eight, (n=6). Groups 1-8 received 1.6mL/kg normal saline, 4000mg\kg monosodium glutamate for 7-days, 4000mg\kg monosodium glutamate for 7-days and 100mg\kg caffeic-acid for 14-days concurrently, 4000mg\kg monosodium glutamate for 7-days and 100mg\kg Phoenix dactylifera for 14-days concurrently, 4000mg\kg monosodium glutamate for 7-days and 100mg\kg luteolin for 14-days concurrently, 100mg\kg. caffeic-acid for 14-days followed by 4000mg\kg monosodium glutamate for 7-days, 100mg\kg Phoenix dactylifera for 14-days followed by 4000mg\kg monosodium glutamate for 7-days and 100mg\kg luteolin for 14-days followed by 4000mg\kg monosodium glutamate for 7-days respectively. After the treatments, the rats underwent behavioural tests, and subsequently, the brain tissues were processed for histological and biochemical analyses. The activities of P. dactylifera and polyphenols ameliorated the deleterious effect of monosodium glutamate, through increased spontaneous alternation of the experimental animals, dominant matured granule cells of the dentate gyrus and modulated the activities of superoxide dismutase, glutathione peroxidase and malondialdehyde in the of male Wistar rats. Therefore, this study revealed that P. dactylifera and polyphenols ameliorated monosodium glutamate toxicity in the dentate gyrus of Wistar rats.


Assuntos
Phoeniceae , Glutamato de Sódio , Ratos , Masculino , Animais , Ratos Wistar , Glutamato de Sódio/toxicidade , Luteolina/farmacologia , Estresse Oxidativo , Giro Denteado
11.
Braz. j. biol ; 83: 1-7, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1469010

RESUMO

Colorectal cancer (CRC) is a disease with high incidence worldwide. As of 2018, it is the second leading cause of cancer deaths in the world. In Saudi Arabia, the incidence of this disease has been increasing in the younger population. Both genetic and lifestyle factors may have contributed to its increased incidence and pathogenesis. Monosodium glutamate (MSG) is a food flavor enhancer that can be found in many commercial foods, and it can sometimes be used as a substitute to table salt. MSG has been investigated for its possible genotoxicity, yielding controversial results. In the present study, the effect of MSG on cell viability and its effect on expression of APC, BECN1, and TP53 genes in SW620 and SW480 colon cancer cell lines were studied. TP53 is a tumor suppressor gene that functions in modifying DNA errors and/or inducing apoptosis of damaged cells, and both APC and BECN1 genes are involved in CRC and are of importance in cellular growth and metastasis. Cancer cell viability was analyzed using MTT assay, and the results showed a significant increase in the number of viable cells after 24h of treatment with MSG with different concentrations (0.5, 1.0, 10, 50, and 100mM). Moreover, gene expression results showed a significant increase in the expression levels of APC and BECN1 under specified conditions in both cell lines; conversely, TP53 showed a significant decrease in expression in SW620 cells. Thus, it can be concluded that MSG possibly confers a pro-proliferative effect on CRC cells.


O câncer colorretal (CCR) é uma doença com alta incidência mundial. Desde 2018, é a segunda principal causa de mortes por câncer no mundo. Na Arábia Saudita, a incidência dessa doença vem aumentando na população mais jovem. Tanto fatores genéticos quanto de estilo de vida podem ter contribuído para o aumento da sua incidência e patogênese. O glutamato monossódico (MSG) é um intensificador de sabor de alimentos que pode ser encontrado em muitos alimentos comerciais e às vezes pode ser usado como um substituto do sal de cozinha. O MSG tem sido investigado por sua possível genotoxicidade, produzindo resultados controversos. Neste estudo, foram estudados o efeito do MSG na viabilidade celular e seu efeito na expressão dos genes APC, BECN1 e TP53 em linhas de células de câncer de cólon SW620 e SW480. TP53 é um gene supressor de tumor que atua modificando erros de DNA e/ou induzindo apoptose de células danificadas, estando os genes APC e BECN1 envolvidos no CRC e sendo importantes no crescimento celular e metástase. A viabilidade das células cancerosas foi analisada por meio do ensaio MTT, e os resultados mostraram um aumento significativo no número de células viáveis após 24 h de tratamento com MSG em diferentes concentrações (0,5; 1,0; 10; 50 e 100mM). Além disso, os resultados da expressão gênica mostraram um aumento significativo nos níveis de expressão de APC e BECN1 sob condições especificadas em ambas as linhagens celulares. Por outro lado, TP53 mostrou uma diminuição significativa na expressão em células SW620. Assim, pode-se concluir que, possivelmente, o MSG confere um efeito pró-proliferativo às células CRC.


Assuntos
Humanos , Genes APC , Glutamato de Sódio/toxicidade , Neoplasias Colorretais/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-36294193

RESUMO

MSG alters metabolism, especially in the brain, when administered to experimental animals via gavage or similar means. Such administration is, however, not applicable to humans. More recently, though, MSG was shown to have these effects even when added to the food of mammals. Moreover, the levels of MSG in food needed to cause these metabolic changes are the same as those needed for optimum flavor enhancement. Near physiological concentrations of glutamate also cause mammalian blastocysts to develop with fewer cells, especially in their inner cell masses, when these embryos are cultured with this amino acid. We propose that consumption of MSG in food may overwhelm the otherwise well-regulated glutamate signaling needed for optimal development by pre- and peri-implantation mammalian embryos. In addition to immediate changes in cellular proliferation and differentiation as embryos develop, MSG ingestion during early pregnancy might result in undesirable conditions, including metabolic syndrome, in adults. Since these conditions are often the result of epigenetic changes, they could become transgenerational. In light of these possibilities, we suggest several studies to test the merit of our hypothesis.


Assuntos
Dieta , Glutamato de Sódio , Animais , Adulto , Humanos , Gravidez , Feminino , Glutamato de Sódio/toxicidade , Alimentos , Aminoácidos , Glutamatos , Mamíferos
13.
Redox Rep ; 27(1): 177-185, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36047349

RESUMO

OBJECTIVES: This study aimed to evaluate the potential mitigating effect of fisetin on monosodium glutamate (MSG)-induced testicular toxicity and investigate the possible involvement of silent mating type information regulation 2 homolog 1 (SIRT1) in this effect. METHODS: Forty male rats were divided into normal control, fisetin-treated, MSG-treated, and fisetin + MSG-treated groups. Testosterone, GnRH, FSH, and LH were measured in plasma, as well as SIRT1 and phosphorylated AMP-activated protein kinase (pAMPK) levels in testicular tissues using ELISA. Hydrogen peroxide (H2O2), nitric oxide (NO), and reduced glutathione (GSH) were measured colorimetrically, while Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) expression was relatively quantified using RT-PCR in testicular tissues. RESULTS: After 30 days, fisetin could ameliorate MSG-induced testicular toxicity by acting centrally on the hypothalamic-pituitary-gonadal axis, increasing plasma levels of GnRH, FSH, LH, and testosterone. Peripheral actions of fisetin on the testis were indicated as it increased testicular SIRT1 and pAMPK. Furthermore, it antagonized glutamate-induced oxidative stress by significantly lowering H2O2, NO, and relative NOX4 expression while significantly increasing reduced GSH levels. It also improved the architecture of the seminiferous tubules, reduced sperm abnormality, and increased sperm count. DISCUSSION: Fisetin ameliorates MSG-induced testicular toxicity via central and peripheral mechanisms making it a promising therapeutic target for male infertility.


Assuntos
Flavonóis , Sirtuína 1 , Testículo , Animais , Flavonóis/farmacologia , Hormônio Foliculoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Estresse Oxidativo , Ratos , Sêmen/metabolismo , Sirtuína 1/metabolismo , Glutamato de Sódio/toxicidade , Testículo/efeitos dos fármacos , Testosterona/metabolismo
14.
Regul Toxicol Pharmacol ; 133: 105223, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35817208

RESUMO

This scoping review aimed to map and elaborate the heterogenous and inconclusive body of evidence relating monosodium glutamate (MSG) and type 2 diabetes (T2DM). For this reason, multiple health outcomes related to T2DM were included and a systematic search was conducted. Experimental and observational trials between 1995 and January 2021 were collected. The tests were highly heterogenous in their samples, doses, route of exposures, durations, diets and conclusions. There was a pattern of negative effects of MSG at oral doses ≥2,000 mg/kg of body weight, and by gavage or injection at any given dose. Evidence was lacking in many areas and most of the evidence relied on short term tests. Further research should focus on standardizing and justifying methodologies, conducting long term studies and toxicokinetic tests, and avoiding bias. Focusing on the gaps highlighted and investigating mechanisms of action of MSG is crucial. Evidence-based toxicology is encouraged.


Assuntos
Diabetes Mellitus Tipo 2 , Glutamato de Sódio , Peso Corporal , Diabetes Mellitus Tipo 2/induzido quimicamente , Aditivos Alimentares , Humanos , Glutamato de Sódio/toxicidade
15.
Int. j. morphol ; 40(3): 697-705, jun. 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1385688

RESUMO

SUMMARY: An association between certain food additives and chronic diseases is reported. Current study determined whether administering toxic doses of the food additive monosodium glutamate (MSG) into rats can induce aortopathy in association with the oxidative stress and inflammatory biomarkers upregulation and whether the effects of MSG overdose can be inhibited by vitamin E. MSG at a dose of (4 mg/kg; orally) that exceeds the average human daily consumption by 1000x was administered daily for 7 days to the rats in the model group. Whereas, rats treated with vitamin E were divided into two groups and given daily doses of MSG plus 100 mg/ kg vitamin E or MSG plus 300 mg/kg vitamin E. On the eighth day, all rats were culled. Using light and electron microscopy examinations, a profound aortic injury in the model group was observed demonstrated by damaged endothelial layer, degenerated smooth muscle cells (SMC) with vacuoles and condensed nuclei, vacuolated cytoplasm, disrupted plasma membrane, interrupted internal elastic lamina, clumped chromatin, and damaged actin and myosin filaments. Vitamin E significantly protected aorta tissue and cells as well as inhibited MSG-induced tissue malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). The highest used vitamin E dosage was more effective. Additionally, a significant correlation was observed between the aortic injury degree and tissue MDA, TNF-α, IL-6, and superoxide dismutase (SOD) levels (p=0.001). Vitamin E effectively protects against aortopathy induced by toxic doses of MSG in rats and inhibits oxidative stress and inflammation.


RESUMEN: Se reporta una asociación entre ciertos aditivos alimentarios y enfermedades crónicas. El objetivo de este estudio fue determinar si la administración de dosis tóxicas del aditivo alimentario glutamato monosódico (MSG) en ratas puede inducir aortopatía en asociación con el estrés oxidativo y la regulación positiva de los biomarcadores inflamatorios y si el efecto de una sobredosis de MSG se puede inhibir con vitamina E. Se administró MSG diariamente durante 7 días una dosis de (4 g/kg; por vía oral) que excede el consumo diario humano promedio, en 1000x a las ratas del grupo modelo. Mientras que las ratas tratadas con vitamina E se dividieron en dos grupos y se administraron dosis diarias de MSG más 100 mg/kg de vitamina E o MSG más 300 mg/kg de vitamina E. Todas las ratas fueron sacrificadas en el octavo día. Usando exámenes de microscopía óptica y electrónica, se observó una lesión aórtica profunda en el grupo modelo demostrada por una capa endotelial dañada, células musculares lisas degeneradas (SMC) con vacuolas y núcleos condensados, citoplasma vacuolado, membrana plasmática rota, lámina elástica interna interrumpida, cromatina agrupada y filamentos de actina y miosina dañados. La vitamina E protegió significativamente el tejido y las células de la aorta, además de inhibir el malondialdehído tisular (MDA) inducido por MSG, la interleucina-6 (IL-6) y el factor de necrosis tumoral alfa (TNF-α). La dosis más alta de vitamina E utilizada fue más efectiva. Además, se observó una correlación significativa entre el grado de lesión aórtica y los niveles tisulares de MDA, TNF-α, IL-6 y superóxido dismutasa (SOD) (p=0,001). La vitamina E efectivamente protege contra la aortopatía inducida por dosis tóxicas de MSG en ratas e inhibe el estrés oxidativo y la inflamación.


Assuntos
Animais , Ratos , Aorta/efeitos dos fármacos , Doenças da Aorta/induzido quimicamente , Glutamato de Sódio/toxicidade , Vitamina E/farmacologia , Aorta/patologia , Glutamato de Sódio/administração & dosagem , Vitamina E/administração & dosagem , Microscopia Eletrônica , Interleucina-6/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Malondialdeído/antagonistas & inibidores
16.
Front Immunol ; 13: 862702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572527

RESUMO

Objective: To establish an artificial intelligence-based method to quantitatively evaluate subtle pathological changes in retinal nerve cells and synapses in monosodium glutamate (MSG) mice and provide an effective animal model and technique for quantitative evaluation of retinal neurocytopathies. Methods: ICR mice were subcutaneously injected with MSG to establish a model of metabolic syndrome. We then established a mouse model of type 1 diabetes, type 2 diabetes, and KKAy mouse model as control. The HE sections of the retina were visualized using an optical microscope. AI technology was used for quantitative evaluation of the retinal lesions in each group of rats. The surface area custom parameters of the retinal nerve fiber layer (RNFL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer (OPL) were defined as SR, SIPL, SINL, and SOPL, respectively. Their heights were defined as HR, HIPL, HINL, and HOPL, and the number of ganglion cells was defined as A. Then, the attention-augmented fully convolutional Unet network was used to segment the retinal HE images, and AI technology to identify retinal neurocytopathies quantitatively. Results: The attention-augmented fully convolutional Unet network increased PA and IOU parameters for INL, OPL, RNFL, and ganglion cells and was superior in recognizing fine structures. A quantitative AI identification of the height of each layer of the retina showed that the heights of the IPL and INL of the MSG model were significantly less than those of the control groups; the retinas of the other diabetic models did not exhibit this pathological feature. The RNFLs of type 2 diabetes were thinner, and the characteristics of retinopathy were not obvious in the other animal models. The pathological changes seen on HE images were consistent with the results of the quantitative AI evaluation. Immunohistochemistry results showed that NMDAR2A, GluR2, and NRG1 were significantly downregulated in the retina of MSG mice. Conclusions: The MSG retinopathy model is closely associated with neurotransmitter abnormalities and exhibits important characteristics of retinal neurodegeneration, making it suitable for studying retinal neurocytopathies. The AI recognition technology for retinal images established in the present study can be used for the quantitative and objective evaluation of drug efficacy.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Retinopatia Diabética , Animais , Inteligência Artificial , Diabetes Mellitus Tipo 2/patologia , Retinopatia Diabética/induzido quimicamente , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos ICR , Ratos , Retina/patologia , Células Ganglionares da Retina/patologia , Glutamato de Sódio/toxicidade
17.
Appl Biochem Biotechnol ; 194(8): 3594-3608, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35460454

RESUMO

The negative changes of obesity to the locomotor system are a major concern in the current scenario, where obesity and metabolic syndrome are recurrent in Western societies. A physical exercise is an important tool as a way to rehabilitate obesity, highlighting whole-body vibration, as it is an easy-access modality with few restrictions. In this sense, we sought to evaluate the effect of whole-body vibration on the extensor digitorum longus muscle on a monosodium glutamate-induced obesity model. The main findings of the present study are related to the ability of the treatment with vibration to reduce the obesogenic characteristics and slow down the dyslipidemic condition of the animals. Likewise, the vibration promoted by the vibrating platform was essential in the recovery of the muscle structure, as well as the recovery of the muscle's oxidative capacity, initially compromised by obesity.


Assuntos
Glutamato de Sódio , Vibração , Animais , Músculo Esquelético/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Ratos , Ratos Wistar , Glutamato de Sódio/metabolismo , Glutamato de Sódio/toxicidade
18.
Pain ; 163(9): 1838-1853, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35404557

RESUMO

ABSTRACT: Ingestion of monosodium glutamate (MSG) causes headache, nausea, and craniofacial tenderness in healthy individuals. The present study explored whether MSG produces behavioural signs of headache, nausea, and changes in craniofacial sensitivity in rats. The behavior of male and female Sprague-Dawley rats was video recorded before and after intraperitoneal (i.p.) injections of MSG (1-1000 mg/kg), nitroglycerin (GTN, 10 mg/kg), or normal saline. Behaviors (grimace score, head-flicks, rearing, head scratches, facial grooming, lying-on-belly, and temporalis muscle region mechanical withdrawal threshold) were evaluated. Facial cutaneous temperature of the nose and forehead was measured before and after i.p. injections via infrared thermography. Plasma glutamate and calcitonin gene-related peptide concentrations after administration of 1000 mg/kg MSG were measured in anesthetized rats. Monosodium glutamate induced nocifensive, headache-like, and nausea-like behaviors in a dose-related manner but had no effect on mechanical threshold. Monosodium glutamate (1000 mg/kg) induced a significantly greater frequency of headache-like behavior in females but a longer duration of nausea-like behavior in males. Monosodium glutamate produced a prolonged increase in plasma glutamate and calcitonin gene-related peptide concentrations. Co-administration of the median effective dose of MSG (350 mg/kg) with GTN (10 mg/kg) amplified headache-like behaviors, induced significant craniofacial sensitivity, and produced increased nausea-like behaviour. Co-administration of sumatriptan or naproxen with MSG (1000 mg/kg) significantly attenuated MSG-induced nocifensive and headache-like behaviors. Our data suggest that systemic administration of MSG to rats induces behavioral correlates of headache and nausea. This model may offer another avenue for research on the mechanism and treatment of primary headache disorders such as migraine.


Assuntos
Cefaleia , Náusea , Fatores Sexuais , Glutamato de Sódio , Animais , Peptídeo Relacionado com Gene de Calcitonina/sangue , Feminino , Glutamatos , Cefaleia/induzido quimicamente , Masculino , Náusea/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Glutamato de Sódio/toxicidade
19.
Mol Neurobiol ; 59(6): 3755-3766, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35381888

RESUMO

Circumventricular organs (CVOs), including the mediobasal hypothalamus (MBH), have an incomplete blood-brain barrier (BBB). In this study, we determined if the BBB function in the MBH is modulated by the gut microbiota or by the Toll-like receptor (TLR) adapter proteins TRIF or MyD88 signaling. By injecting mice with Evans blue, a marker for BBB permeability, we show that germ-free (GF) and conventionally raised (CONV-R) mice did not differ in the number of Evans blue-positive cells in MBH. Acute modulation of the gut microbiota did not change the number of Evans blue-positive cells. In contrast, CONV-R Myd88-/- and Trif-/- mice had a reduced number of cells in direct contact to the circulation compared to wildtype (WT) mice. This was accompanied by increased tight junction proteins in the blood vessels in Myd88-/- mice. To further characterize the BBB function, we injected WT and Myd88 -/- CONV-R mice as well as WT GF mice with monosodium glutamate (MSG), a neurotoxin that does not cross the BBB. While MSG caused vast cell death in the MBH in CONV-R and GF WT mice, Myd88 -/- mice were protected from such cell death suggesting that fewer cells are exposed to the neurotoxin in the Myd88 -/- mice. Taken together, our results suggest that MyD88 deficiency, but not gut microbiota depletion, is sufficient to modulate the BBB function in the MBH.


Assuntos
Barreira Hematoencefálica , Microbioma Gastrointestinal , Hipotálamo , Fator 88 de Diferenciação Mieloide , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Azul Evans , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Neurotoxinas/toxicidade , Glutamato de Sódio/toxicidade
20.
Nat Prod Res ; 36(23): 6156-6159, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35356842

RESUMO

We aimed to evaluate the neuroprotective effect of H. sibthorpioides against monosodium-glutamate (MSG) induced excitoneurotoxicity in rats. We randomly divided the animals into 11 groups (n = 8) and subjected them to high doses of MSG (2 g/kg body weight) and the test dose (1 week). The test chemicals were H. sibthorpioides extracts of petroleum ether, chloroform, methanol, and water. We used Dizocilpine-hydrogen-maleate as a standard and assessed the cognitive property using Morris-water-maze and elevated-plus-maze. After the experimental period, we evaluated the biochemical parameters. We found chloroform and methanolic extracts significantly enhanced the cognitive behaviour of rats compared to control. Biochemical analysis suggested that there was a high level of antioxidants and lower levels of glutamate and proinflammatory cytokines in the cortex and hippocampus. We concluded that chloroform and methanolic extracts of H. sibthorpioides enhanced the level of antioxidants, decreased proinflammatory-cytokines and glutamate in the brain, and thus prevented the monosodium-glutamate-induced-excite-neurotoxicity.


Assuntos
Araliaceae , Centella , Fármacos Neuroprotetores , Animais , Ratos , Glutamato de Sódio/toxicidade , Fármacos Neuroprotetores/farmacologia , Antioxidantes/farmacologia , Clorofórmio , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Metanol , Citocinas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...